Una hipérbola es el lugar geométrico de los puntos de un plano tales que el valor absoluto de la diferencia de sus distancias a dos puntos fijos, llamados focos, es igual a la distancia entre los vértices, la cual es una constante positiva. |
Una hipérbola (del griego ὑπερβολή) es una sección cónica, una curva abierta de dos ramas obtenida al cortar un cono recto por un plano oblicuo al eje de simetría con ángulo menor que el de la generatriz respecto del eje de revolución.
Ecuación de una hipérbola con centro en el punto
Es el lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos llamados focos es constante.
Elementos de la hipérbola
Focos
Son los puntos fijos F y F'.
Eje focal
Es la recta que pasa por los focos.
Eje secundario o imaginario
Es la mediatriz del segmento .
Centro
Es el punto de intersección de los ejes.
Vértices
Los puntos A y A' son los puntos de intersección de la hipérbola con el eje focal.
Los puntos B y B' se obtienen como intersección del eje imaginario con la circunferencia que tiene por centro uno de los vértices y de radio c.
Radios vectores
Son los segmentos que van desde un punto de la hipérbola a los focos: PF y PF'.
Distancia focal
Es el segmento de longitud 2c.
Eje mayor
Es el segmento de longitud 2a.
Eje menor
Es el segmento de longitud 2b.
Ejes de simetría
Son las rectas que contienen al eje real o al eje imaginario.
Asíntotas
Son las rectas de ecuaciones:
Relación entre los semiejes
No hay comentarios:
Publicar un comentario